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A NUMERICAL PROCEDURE FOR PREDICTING MULTIPLE 
SOLUTIONS OF A SPHERICAL TAYLOR-COUETTE FLOW 
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Department of Enginem'ng Science, National Cheng-Kung University. Tainan. Taiwan 

SUMMARY 

A new numerical procedure for predicting multiple solutions of Taylor vortices in a spherical gap is presented. The 
steady incompressible Navier-Stokes equations in primitive variables are solved by a finitedifference method 
using a matrix preconditioning technique. Routes leading to multiple flow states are designed heuristically by 
imposing symmetric propemes. Both symmetric and asymmetric solutions can be predicted in a deterministic way. 
The current procedure gives very fast convergence rate to the desired flow modes. This procedure provides an 
alternative way of finding all possible stable steady axisymmetric flow modes. 
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INTRODUCTION 

The set of Navier-Stokes equations is possessed of non-linear characteristics in nature. Furthermore, a 
flow solution depends on both initial and boundary conditions. Therefore, the Navier-Stokes equations 
allow multiple solutions under steady state conditions, such that, given a stationary boundary 
condition, a flow may have different steady state solutions depending on different initial or transient 
conditions. A typical example is the flow in a spherical gap. 

Flow in the gap between a rotating inner and a stationary outer sphere can generate Taylor vortices. 
For the gap width of a = 0.1 8 (a = (Rz - R l ) / R I ,  R1 and R2 are the radii of inner and outer spheres), 
Sawatzki and Zierep' have observed non-unique flow modes at a supercritical Reynolds number 
(Re = R, R:/v, Rl is the angular velocity of the inner rotating sphere and v is the kinematic viscosity), 
namely, three steady axisymmetric and two unsteady non-axisymmetric modes. Steady modes contain 
either 0 (mode I), 1 (mode HI), or 2 (mode IV) vortices per hemisphere near the equator; unsteady 
modes also contain either 1 or 2 vortices. Wimme? showed in subsequent experiments that the flow 
modes can be produced by different accelerations of the inner sphere. Each mode requires a certain 
acceleration of the inner sphere to an angular velocity corresponding to the critical values of the 
Reynolds number. For the sake of clarity, Figures 1 and 2, taken from Biihler and Z i e r e ~ , ~  show 
schematically different steady flow modes at a supercritical Reynolds number and existence regions of 
the flow modes with respect to Reynolds number. Note that each flow mode has its own region of 
existence at steady state. For instance, at Re = 600, only 0-vortex flow exists; at Re = 800, 1 - and 2- 
vortex flows exist; at Re = 1500, the three flow modes exist. As the Reynolds number is getting higher, 
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Figure I .  Different steady flow modes at a supercritical Reynolds number 

the flow instability occurs and gradually transits from laminar to turbulent state. For Re greater than 
11 000, only a turbulent 0-vortex flow state exists. In this study, no attempt is made to investigate the 
transition from laminar to turbulent problems. 

Some numerical studies on the three steady axisymmetric flow modes have been made previously."8 
Bales4 solved the unsteady axisymmetric Navier-Stokes equations in stream-function vorticity 
formulation by means of a finite-difference approximation. He used a quadrant annulus (0 Q 0 Q in, 
equator at 8 = 0, pole at f n) as a computation domain and imposed equatorially symmetric boundary 
conditions. For the gap width of cr = 0.18, he could not obtain 1-vortex flow without arbitrary 
disturbances of the symmetry near the equator. The other two steady modes, 0- and 2-vortex flows, 
were simulated through straightforward calculations. Marcus and Tuckerman' used the same 
formulation while the equations were solved by a pseudospectral method. Their numerical 
computations were carried out in the whole domain (- f IL Q 8 Q f n). By controlling the accelerations 
of the inner sphere, they were the first to reproduce 1-vortex flow as a solution of an initial-value 
problem directly from the basic flow. As with the long development time for experiments, a long 

Figure 2. Existence regions of the flow modes 
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computation time was also needed for this mode. Shraup used the continuation method to investigate 
how the instability of the spherical Couette flow depends on the gap size. Buhler' presented a 
comprehensive investigation of a spherical gap flow, Q = 0.154, with an initial value code based on an 
explicit finite difference method. He discovered for the first time that, within the nonexistence range of 
the symmetric 1 -vortex mode, a similar 1 -vortex stable mode asymmetric with respect to the equatorial 
plane can exist. The asymmetric mode consists of two Taylor vortices, only slightly larger than the 
other and straddling the equator. This is interesting, since the boundary conditions are always 
symmetric with respect to the equator. The existence of such asymmetric modes is confirmed by his 
experiments. Mamun and Tuckerman' devised a unified computational approach to study the 
bifurcation-theoretic origin of Buhler's asymmetric states. They found that the asymmetric branch 
originates from pitchfork bifurcation; its stabilization occurs via a subsequent subcritical Hopf 
bifurcation. 

The state attained by the flow depends on its history, especially on the transient acceleration of the 
inner sphere from rest to its final rotation state, and on the kind of disturbances permitted by 
experimental set-up or numerical schemes. By closely mimicking laboratory experiments, the steady 
flow modes can be simulated numerically by solving the full-time dependent Navier-Stokes equations. 
Although the free flow modes are axisymmetric and symmetric with respect to the equator at steady 
states, the whole domain (- n < 8 < i n) is required in the case of simulating 1 -vortex flow since the 
transition process of the flow was found to be breaking symmetry at the equator.' The advantage of 
solving the full-time dependent Navier-Stokes equations (initial- and boundary-value equations) is that 
one can examine the physics associated with the transition process. The disadvantage is that it requires 
many time-steps if the particular physics associated with the transition is slow. Mamun and 
Tuckerman' proposed a steady-state solver coupled with a continuation method that they can find all 
the steady states and locate bifurcation points. They used the Newton's method together with a matrix 
preconditioning to make the continuation method inexpensive. Both the southern and the northern 
hemispherical shells are required in the domain of the calculation. 

In this study, a technique is proposed to simulate the three steady axisymmetric laminar and the 
asymmetric flow modes. In the numerical simulation, only half the domain (0 < 8 < in) is required 
for simulating the axisymmetric flow modes, hence saves half the computational cost. Matrix 
preconditioning technique is applied to the Navier-Stokes equations for a faster convergence rate to the 
steady state. The effect of the preconditioning parameters on the convergence rate is investigated. A 
method, by means of fictitious symmetric boundary conditions, defining routes to each flow mode is 
introduced without taking into account the transition process. The asymmetric flow mode can be 
similarly simulated, however, both the northern and southern spherical shells are included in the 
computational domain. The computational procedure also provides a fast way of finding all possible 
steady axisymmetric flow modes. The present solutions, in terms of friction torques and vortex sizes, 
show excellent agreement with the experiments. 

GOVERNING EQUATIONS AND NUMERICAL METHOD 

The three-dimensional, incompressible Navier-Stokes equations are modified to the following set of 
governing equations: 
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where t is time; xi are the Cartesian co-ordinates; u; are corresponding velocity components; p is the 
presure; and zii are the stress tensors. The parameters a and B, according to Turkel? are introduced to 
precondition the Navier-Stokes equations and allow for a faster convergence to the steady state. This 
formulation is an extension of Chorin's artificialcompressibility method." The artificial-compressi- 
bility method added an artificial time derivative of the pressure to the continuity equation together with 
a parameter f l  (i.e. let a=  - 1 in (2)). The method has been applied successfully to investigate 
complex internal flow problems.' ' - I 3  

The equations are then transformed to a general co-ordinate system in which the general co- 
ordinates 

(3) 

are related to the Cartesian co-ordinate xt by 

t; = t;(x, y. z). 

In the generalized curvilinear co-ordinates, the governing equations in conservation-law form are 
expressed as 

h f - D + - ( , k i - P i )  a -  a = O .  
at ati (4) 

Preconditioning matrix M, pressure and velocity vector D, flux vector 8, and viscous diffusion vector 
are described by 

0 0 0  
( r +  l)up-' 1 0 0 
(a+ l)vB-' o 1 o 
(z+  1)wp-I 0 0 1 wu; + L1g 

where J is the Jacobean of co-ordinate transformation, and 

u; = Lj'U + Lav +Law, 
41 = ( t i ) x t  Liz = (tily, La = ( t i ) z  

are the contravariant velocities and the metrics of transformation respectively. 
The governing equations are replaced by an implicit time difference approximation (backward- 

difference). Non-linear numerical fluxes at the implicit time level are linearized by Taylor expansion; 
then, spatial difference approximations (central-difference) are introduced. The result is a system of 
multidimensional, linear, coupled difference equations for the dependent variables at the implicit time 
level. To solve these equations, the approximate-factorization or AD1 ~ c h e m e ' ~ * ' ~  is used. This 
technique leads to the following system of coupled linear difference equations 

( M  + A t L o u '  = RHS, 
(M + AtL,) = ALl** = MAD', 

(M + AtL,)ALl = MAD**, 

where 
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ALl* and AD** are intermediate solutions. The system of equation ( 5 )  can be written in narrow block- 
banded matrix structures and be solved by a standard LU decomposition method. 

INITIAL AND BOUNDARY CONDITIONS 

At a supercritical Reynolds number, the final steady states of the spherical Taylor-Couette flow depend 
on the accelerating history of the inner sphere and initial conditions. The present numerical algorithm 
uses a preconditioning method and thus transient history is different from the realistic situation. 
Disregarding the transient accuracy, the current work is to find route leading to steady 0-, 1- and 2- 
vortex flows with a faster convergent rate to the steady states. The computation is conducted in a 
quadrant annulus 0 G 8 < in. The initial conditions for all calculations (except some special cases) 
are given as follows: linear velocity profile across the gap in the circumferential direction, zero velocity 
components in the meridional plane, and zero static pressure in the entire domain. 

The modified Navier-Stokes equations have a symmetric hyperbolic system. The preconditioning 
matrix is positive definite (B > 0). The appropriate number of boundary conditions is the same as that 
for the original Navier-Stokes equations. To make the problem well-posed, the following boundary 
conditions are used: reflection-symmetric condition is applied at equator and pole, no-slip condition is 
used on inner and outer sphere surfaces, normal pressure gradient on both sphere surfaces is balanced 
by centrifugal and viscous forces, and a reference pressure is set at a specified point in the computation 
domain. 

COMPUTATIONAL PROCEDURE AND RESULTS 

Spherical Taylor-Couette flow is characterized by two parameters: the Reynolds number, (Re), and the 
gap width, (a). The current computations are performed for a=0.18 and Re < 1500. Numerical 
convergence is checked by monitoring the friction toques acting on inner and outer sphere surfaces. 
At a steady state, the friction torques are equal in magnitude and the numerical residual has to drop 
three orders of magnitude. To make sure the steady-state solutions are independent of mesh 
distributions, two grid systems were tested for the case of Re = 1500: 1 1 1 x 5 1 and 8 1 x 41 (J x K, J 
and K are number of mesh points in azimuthal and radial direction respectively). Both computed 
solutions were nearly identical to each other. Therefore, 8 1 x 4 1 grid system is used throughout these 
calculations. Dense mesh is used in the regions where the flow gradient is expected to be large. For 
example, in the near wall regions and the regions where the Taylor vortices are formed. 

Preconditioning parameters (a and /?) remained to be specified. The proper choice of the parameters 
can enhance convergent rate to steady states. A parametric study is therefore investigated to 
demonstrate this effect. Figures 3 and 4 show the residual histories with different values of a and /? for 
Re = 600. In Figure 3, a = 1, different values of B result in different convergent rate. For B = 1 gives 
the best convergent rate, in contrast to /I = 3 which gradually deteriorates the solution. In Figure 4, 
/? = 1, different values of a also yields different convergent rate. It is shown in Reference 9, for an 
inviscid equation, a = 1 makes the acoustic sound speed isotropic and independent of the flow velocity. 
The current investigation of convergence for viscous flow calculations also has the same trend as for 
the inviscid equation. On the basis of this investigation, all calculations performed in this study use 
a = / ? = l .  

In the region near the pole, local flow is similar to that which occurs in the gap between a rotating 
disc and a stationary housing. In the region near the equator, local flow is similar to that of cylindrical 
Taylor-Couette flow. Because of the Eckman pumping effects, centrihgal forces drive fluid along the 
inner rotating sphere from the pole toward the equator. Near or at the equator plane (depending on flow 
mode), the fluid is deflected outwards and moved back to the pole in the vicinity of the outer sphere. It 
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Figure 3. Residual history for Re = 600 with a = I 
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should be noted that each flow mode has its own region of existence at steady state. The following 
discussions are based on the assumption that each flow mode exists at a given Reynolds number in 
each category. Routes leading to these flow modes are described below. 

Route to 0-vortexjlow 

Using initial and boundary conditions depicted in an earlier Section, the current numerical method 
converges to a 0-vortex flow. It has to be noted that the friction torque for both inner and outer spheres 
has to reach a constant at steady state. Figure 5 shows the results for Re=600. It clearly shows that 
after NT=300,  the flow reaches an equilibrium state (i.e. both inner and outer friction torques are 
equal). If the flow mode does not exist at a given Reynolds number, an equilibrium state may be 
obtained during the process of the calculation; however, the friction torque is not a constant during the 
time interval. Eventually, the fnction torque reaches a constant and then another steady flow mode is 
formed. An example will be given later. 

Figure 4. Residual history for Re = 600 with /? = 1 
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Figure 5 .  Frictional torque history for Re = 600 

Route to I-vortexfiw 

Experimental observations indicated that vortex size near the equator of 1 - vortex flow has the same 
order of the gap width’s magnitude. The vortex near the equator is separated from the major portion of 
the meridional flow through a dividing streamline. Local flow on either side of the streamline reveals 
symmetric character. For the numerical simulation of the 1 -vortex flow, a radial line at one gap width 
distance away from the equator is chosen as a fictitious inner symmetric boundary; there flow variables 
are treated as symmetric. Using conditions described in an earlier section and the inner symmetric 
treatment, a ‘rough’ 1-vortex flow can be simulated. With the ‘rough solution’ as the initial condition 
and taking out the treatment at the specified radial line, the current numerical method converges to a 1 - 
vortex flow. In the calculation of Reference 4, although the half domain (0 < 8 < 4.) was used, one 
has to disturb the flow near the equator constantly to form the 1-vortex flow. In contrast, the current 
approach has a clear location to impose the fictitious symmetry condition. In the calculations of 
Reference 5 ,  the whole domain (-in < 0 < 4.) is required since the transition process of the 1- 
vortex flow revealed symmetry breaking at the equator. Furthermore, one has to control the rotating 
hstory for a long time to form the 1-vortex flow during the transient accurate calculation. With the 
current approach, only half domain is required and there is no need to control the rotating history of the 
inner sphere. The treatment at the chosen fictitious boundary during the initial calculation creates a 
necessary state for 1-vortex flow to exist. 

Routes to 2-vortex flow 

There are two routes that can lead to a steady 2-vortex flow. First a similar treatment as with 1-vortex 
flow is applied to the 2-vortex flow simulation. In this case two radial lines are chosen as fictitious 
inner symmetric boundanes. The separation distance along the two radial lines and the equator is about 
one gap width each. Computation with conditions given in an earlier section and the inner symmetric 
treatment at the two radial lines can lead to a ‘rough’ 2-vortex flow. Taking out the treatment at the two 
specified radial lines and using the rough solution as the initial condition, the current numerical method 
converges to a steady 2-vortex flow. This treatment toward the ha1 steady 2-vortex flow is called 
forced transition. Another route is called free transition. In this case, a straightforward calculation 
using initial and boundary conditions given earlier can converge to a steady 2-vortex flow. In the 
process of the free transition, it is observed that the fiction torque for both inner and outer spheres is in 
an equilibrium state but is not a constant with respect to time during a time interval. Figure 6 shows an 



1142 R.-J. YANG 

g 0.51 

Figure 6. Convergent history toward 2-vortex flow 
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example of convergent histories for both forced and free transition for the case of Re = 800. In the case 
of free transition, the flow reaches an equilibrium state after 300 time steps (NT= 300). However, the 
friction torque varies with respect to time until N T =  1600. In the case of forced transition, the first 300 
time steps were treated as having inner symmetric boundaries and continuing the calculation, the flow 
converges to a steady 2-vortex flow after N T =  500. It is obvious that the case of the forced transition 
led to a much faster convergent rate toward a steady state. One has to be cautious in judging whether a 
solution is converged. To clarify this question, Figure 7 shows the residual history as well as the 
friction torque for both the inner and outer spheres. The calculation was performed with a 
straightforward computation for Re = 800. It is observed that an equilibrium state is reached after 
NT= 300. However, the residuals gradually increase !?om NT= 500 to N T =  1200. Therefore, a 
constant frictional torque and a drop of three order of magnitude in the residual are required for a 
convergent solution. 

The three steady flow modes behave quite differently near the equator. Figure 8(a) gives velocity 
vectors on meridional plane and Figure 8(b) gives circumferential velocity component at the equator 
for the case of R e =  1500. Taylor vortices for 1- and 2-vortex flows are clearly shown. The 
circumferential velocity profiles at the equator are quite different due to the Taylor vortices. Figures 9 
and 10 give circumferential skin friction and azimuthal pressure gradient coefficients. Wild differences 
are clearly shown within 0 < 40". From Figure 8(a) and Figure 10, it is interesting to note that the 
turning directions of the Taylor vortices are consistent with the pressure gradient in the theta direction 
along the inner sphere surface. In Figures 1 1 and 12, the current results (friction torques and vortex 

n m m s  
Figure 7. Frictional torque and residual history for 2-vortex flow 
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Figure 8. (a) Velocity vectors on meridional plane (Re = 1500). @) Circumferential velocity profiles at equator (Re = 1500) 

sizes) agree quite well with the Marcus’ calculations and Wimme? measurements. From Figure 11, 
region of existence for the three flow modes is clearly shown. The 0- and 2-vortex flows lie on the 
same solution branch, and the I-vortex flow lies on a separate branch. 

GENERALIZATION OF THE USE OF FICTITIOUS BOUNDARY CONDITIONS 

The computational procedure described previously can be generalized to other flow geometries without 
prior knowledge of the final answer. Before giving an example, the following comments are made. 

1. The vortex size in a spherical gap is almost in square form. Thus we can place fictitious 
boundaries along the 0- direction at n x 6, where n is the number of fictitious boundaries. In 
doing so, we can generate n vortices in a spherical shell deterministically. 

2. For the gap width 6 = 0.18, Re = 1000, we perform numerical experiments by setting value of n 
from 1 to 4. As described in the previous section, by imposing n = 1 and n = 2 during the initial 
‘seeding’ process, then take out the imposed fictitious boundary treatments, at the steady state we 
obtain 1 - and 2-vortex flow solutions respectively. By imposing n = 3 and n = 4, we can seed the 
3- and 4-vortex flows as initial conditions. Taking out the imposed boundaries and continue the 
computation, then we obtain a 2-vortex flow solution at the steady state. It is seen that no matter 
how many vortices being created for the initial condition, a steady 2-vortex flow solution will be 
obtained. 

awl u 
o 16 ao 45 w 75 na 

nwc. 
Figure 9. Circumfmtial skin friction coefficient on inner sphere surface 
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Figure 13. Streamline p a w s  for all possible axisymmetnc flow modes, u = 0. I ,  Re = 2500 

3. In principle, we can arbitrarily apply any number of fictitious boundaries during the initial 
seeding process. However, Taylor vortices are observed, from experiments, to occur near the 
equator within 30" along the Odirection. Therefore, there is no need to seed the vortices beyond 
the 30" location. 

Based upon the above comments, we perform a calculation in which no prior answer is known. The 
flow geometry and the Reynolds number are ~7 = 0.1 and Re = 2500 respectively. By imposing n = 1,2, 
3 and 4, we obtain steady solutions for 3-vortex, 2-vortex, 3-vortex and 4-vortex flow respectively. For 
n > 4, we can only obtain a steady 4-vortex flow solution. Under the present computation procedure, 
three steady axisymmetric flow modes are found, namely, 2-, 3- and 4-vortex flows. The streamlines of 
these solutions are shown in Figure 13. The computed ratio of the frictional torque to the Stokes torque 
is 1.53, 1.65 and 1.71 respectively. This computation procedure provides an alternative way of finding 
all possible steady flow modes. 

Figure 14. Streamline of the asymmetric 1 -vortex flow mode, u = 0.154, Re = 1500 
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It would be interesting to extend the current technique to simulate the asymmetric 1-vortex flow 
discovered by Biihler.’ The flow conditions are: the gap width a = 0.154, and Re = 1500. Since the 
flow is asymmetric with respect to the equator, both the southern and northern spherical shells are 
included in the computation domain. Buhler has a ‘recipe’ to obtain the asymmetric solution. First, a 
sudden acceleration from rest to Re=  1850 will produce a supercritical 0-vortex state. Them by 
decreasing Re, the asymmetric 1-vortex state is obtained. His procedure will show the physical vortex 
transition between different flow states. If applying the present seeding procedure, then a treatment in 
the fictitious boundary is imposed in the southern hemisphere at the distance about 2a away from the 
equator. This asymmetric seeding will produce a rough initial asymmetric 1 -vortex flow. Taking out the 
imposed fictitious boundary treatment and preceding the computation, a steady asymmetric 1 -vortex 
flow solution can be obtained. Figure 14 shows the streamline of the final steady solution. 

CONCLUSION 

A new technique to simulate Taylor vortices in a spherical gap has been developed and tested. The 
incompressible Navier-Stokes equations are solved by using a matrix preconditioning technique. The 
non-unique steady flow modes associated with the Taylor vortices are simulated in special ways. 
Routes leading to different vortex flows are designed heuristically. Fictitious symmetric boundaries 
near the equator are imposed during a time of the calculation and the choice of location of the fictitious 
boundaries is determined by the desired flow mode being simulated. The imposition of the fictitious 
symmetric boundaries during the initial calculation generates the state suitable for the desired flow 
mode to exist. After taking out the fictitious boundaries, the flow settles down into its own attractor. By 
this method, all possible stable steady axisymmetric flow modes can be simulated by using half 
domain, i.e. 0 < 8 < f n. Therefore, computational cost is saved 50 per cent compared with that using 
the whole domain. The procedure also provides a fast way of finding all possible stable steady 
axisymmetric flow modes. An asymmetric solution can also be predicted by a deterministic way. The 
current numerical technique converges to desired flow modes very fast. 

It is worthwhile noting limitations of the present computation method. They are listed in the 
following. (1) Similar to continuation methods, the present method computes steady-state flow modes 
only. Here, a matrix preconditioning technique is used. Therefore, no physical meaning can be ascribed 
to the evolution of the flow from the initial state to the final state. (2) The final states may or may not be 
linearly unstable, and the present method can not determine the stability since pseudotime is used in 
the integration. (3) Unlike continuation methods, which produce bifurcation diagrams, the present 
method may require extensive parametric study to obtain a global picture of a flow. (4) After 
computing one or more converged, steady states at a fixed value of the control parameter with this 
method (by starting with different initial and boundary conditions), it seems difficult to know whether 
all of the steady states at that fixed control parameter have been found. This is true for the continuation 
method as well. However, if one is systematic, at least it is known that one has found all solutions that 
bihcate from the main, secondary, tertiary, etc., branches at b iba t ion  parameter numbers less than 
some upper bound. ( 5 )  Some unstable steady spherical Taylor-Couette flows may exit. Calculating 
unstable steady states by the present time integration is, of course, impossible. The present method 
only provides a rapid way of calculating stable steady states. With continuation methods, if one can 
find the branch or its bifurcation point, then one can compute the solution. 
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